Advanced Course on Bioinorganic Chemistry & Biophysics of Plants – Introduction

Schwermetall-Hyperakkumulation im Wilden Westen

modified from: http://strangematter.sci.waikato.ac.nz/

Basics of Bioinorganic Chemistry and Biophysis

Bioinorganic Chemistry versus Classical organic and inorganic Chemistry and Biology

Classical organic chemistry

Deals with carbonbased compounds, i.e. the main ingredient of dry mass from organisms (→ NAME!)

Bioinorganic chemistry

Classical
inorganic chemistry
Investigates reactions
and properties of
predominantly NOT
carbon-based

compounds, incl.

metals.

Classical biology

- Investigates structure and function of all forms of life

Themes of bioinorganic chemistry research

Metal coordination in biological ligands

- → Metal(loid) transport
- → Metal(loid) storage
- → Metal-based catalysis in biology, usually via metal-based active sites in enzymes
- → Metals as structural elements in proteins
- → Metal(loid) deficiency and toxicity
- → Metal(loid) detoxification

Methods used for investigating these questions include for example (in solutions, in models systems, but also in living cells)

- UV/VIS absorption and fluorescence spectroscopy (→ electronic transitions to/from excited states)
- X-ray absorption and emission spectroscopy (→ ionisation energies = X-ray absorption edges and emission bands, their element-specific characterisitics and their modification by redox state and neighbouring atoms)
- EPR spectroscopy (→ analysis of the ligand environment of paramagnetic metal ions)
- NMR spectroscopy (→ analysis of the environment of NMR-active nuclei)

Biophysics versus Classical Experimental Physics and Classical Biology

Classical Experimental Physics

Deals with interactions (e.g. energetics, speeds and forces) between particles, explains the basic principles of matter

Biophysics

electrostatic
interactions
between
biological
macromolecules,
energy transfer
between and
within biologicaly
relevant
molecules

Classical Biology

Investigates interactions
between organisms
(individuals, groups,
speceis) and between
organisms and abiotic
factors

Themes of biophysical research

Energetics and kinetics of biological processes

- → transport (e.g. of metals)
- → catalysis in biology, usually via metal-based active sites in enzymes
- → reversible coupling of biologically relevant molecules without bond formation/breakage
- → protein folding

Methods used for investigating these questions include for example (in solutions, in models systems, but also in living cells)

- UV/VIS absorption and fluorescence spectroscopy (→ electronic transitions to/from excited states → e.g. analysis of chromophore coupling)
- X-ray absorption spectroscopy (→ ionisation energies = X-ray absorption edges and emission bands, their element-specific characteristics and their modification by redox state and neighbouring atoms)
- EPR spectroscopy (> e.g. spin labelling for analysis of protein folding)
- NMR spectroscopy (→ e.g. analysis of kinetics of protein (re-/un-)folding)

II.
What will we show you?

Theoretical Background of important biochemical and biophysical methods...

... differences in the basics and applications between related methods...

EXAFS

high kinetic

energy

 $k > k_0$

unoccupied valence states

occupied valence states

core states low kinetic energy

 $k < k_0$

...and the use of these methods for answering questions in bioinorganic chemistry and biophysics.

Construction principles of measuring intruments as well as advantages and disadvantages resulting from it.

Advantages:

- Detection limits for most elements equal to or better than those obtained by Graphite Furnace –AAS (GFAAS)
- Higher throughput than GFAAS
- minimum of matrix interferences due to the high-temperature of the ICP source
- Superior detection capability to ICP-AES with the same sample throughput
- Ability to obtain isotopic information.

Disadvantages:

- more complicated technique than AAS
- much more expensive than AAS
- elements that prefer to form negative ions, such as CI, I, F, etc. are very difficult to determine via ICP-MS because ions formed by the ICP discharge are typically positive ions.

Principles of sample preparation for specific methods...

micropipette filled with silicon oil, connected to air-filled syringe for controlling pressure difference

turgor pressure of punctured cell fills pipette with 5-20 picolitres (10⁻¹² l) of cell sap

Analysis:

recording of EDXA spectra in SEM
 data processing

typical dried sample

Sample preparation:

1) transfer to storage grid, addition of internal standard (e.g. RbF) and matrix (e.g. mannitol)

transfer to analysis grid, drying with isopentane

analysis grid

...and problems associated with these samples.

Effect of shading

shading inside a sample leads to absorption of low-energy x-rays

Effect of acceleration voltage

high acceleration voltage leads to deeper penetration into the sample!

Principles

We show you plants that strongly like potentially toxic metals...

Effects of Ni²⁺ addition on hyperaccumulator plant growth and Ni²⁺ concentration in shoots

Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) J Exp Bot 52 (365), 2291-2300

...why trace metals can become toxic for plants...

- shift of absorbance/fluorescence bands --> less energy transfer
- different structure --> proteins denature
- do not readily perform charge separation when in reaction centre
- unstable singlet excited state --> "black holes" for excitons

...and how plants defend themselves against that toxicity.

Mechanisms

- Generally: aktive transport processes against the concentration gradient
 → transport proteins involved.
- Exclusion from cells:
- observed in brown algae
- in roots
- Sequestration in the vacuole:

Küpper H et al., 2001, J Exp Bot 52 (365), 2291-2300

- plant-specific mechanism (animals+bacteria usually don't have vacuoles...)
- very efficient, because the vacuole does not contain sensitive enzymes
- saves the investment into the synthesis of strong ligands like phytochelatins
- main mechanism in hyperaccumulators
- Sequestration in least sensitive tissues, e.g. the epidermis instead of the photosynthetically active mesophyll

We will show you original data from recent research...

And conclusions that can be drawn from the analysis of measured data.

Normal: Sequestration in epidermal storage cells

Stressed: additional sequestration in selected mesophyll cells

Acclimated: Enhanced sequestration in epidermal storage cells

How to compare your results with previous studies...

- Commercial scientific databases like Web of Science or Scopus
- Free scientific databases like medline/pubmed
- Advertisement-based "free" commercial search engines like Google

... and how to publish them

13th International Conference on Biological Inorganic Chemistry

Plant, Cell and Environment (2011) 34, 208-219

Detection limits of different metal analysis methods

1 ppm = 1000ppb = 1 mg/L = 1 g/m³, i.e. approximately 1/10 of a sugar cube in a bath tub 1 ppb = 1 μ g/L = 1 g/1000m³, i.e. approximately a sugar cube in a swimming pool 1 ppt = 0.001 ppb = 1 ng/L = 1 g/1,000,000m³, i.e. approximately a sugar cube in Lake Constance

Metal content – methods of Measurement (I) Atomic Absorption Spectroscopy (AAS)

Advantages:

- easy to use,
- fast if only 1 element is needed
- affordable

Disadvantages:

- insensitive for some elements (e.g. sulphur)
- slow if many elements are needed

Metal content – methods of Measurement (II) Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS) Principle

Metal content – methods of Measurement (II) Graphite Furnace Atomic Absorption Spectroscopy (GF-AAS)

Criteria	Flame	Furnace
Elements	67	48
Sensitivity	ppm - %	ppt – ppb
Precision	Good	Fair
Interferences	Few	Many
Speed	Rapid	Slow
Simplicity	Easy	More complex
Flame Hazards	Yes	No
Automation	Yes	Yes (unattended)
Operating Cost	Low	Medium

From: http://www.scribd.com/doc/15784148/Graphite-Furnace-Analysis

Metal content – methods of Measurement (III) Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

From: Perkin Elmer teaching file (top); LC-ICP-MS experiment at UFZ Leipzig (bottom)

Metal content – methods of Measurement (III) Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Advantages:

- Detection limits for most elements equal to or better than those obtained by Graphite Furnace –AAS (GFAAS)
- Higher throughput than GFAAS
- minimum of matrix interferences due to the high-temperature of the ICP source
- Superior detection capability to ICP-AES with the same sample throughput
- Ability to obtain isotopic information.

Disadvantages:

- more complicated technique than AAS
- much more expensive than AAS
- elements that prefer to form negative ions, such as Cl, I, F, etc. are very difficult to determine via ICP-MS because ions formed by the ICP discharge are typically positive ions.

Metal content – methods of Measurement Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Principle components of an ICP-SFMS

Metal content – methods of Measurement Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

ELEMENT XR Ion Detection System

Advantages of element XR vs. quadrupole ICP-MS

- High mass resolution - Still much higher sensitivity than regular ICP-MS (breaking ppg barrier) - At the same time measurement of abundant elements via triple detector system lectron Multiplier Exit Slit Faraday

Conversion Dynode

Inductively Coupled Plasma Mass Spectrometry (ICP-MS): automatic detector switching in Element XR

Metal content – methods of Measurement Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Extended Dynamic Range in the Finnigan ELEMENT XR

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Coupling to HPLC

Left: Photo from our lab;

All slides of my lectures can be downloaded

from my workgroup homepage

Biology Centre CAS → Institute of Plant Molecular Biology → Departments
→ Department of Plant Biophysics and Biochemistry,

or directly

http://webserver.umbr.cas.cz/~kupper/AG_Kuepper_Homepage.html