
Heavy Metals and Plants - a complicated relationship \rightarrow Cadmium toxicity

Heavy metal-hyperaccumulation in the Wild West

modified from: http://strangematter.sci.waikato.ac.nz/

Hendrik Küpper based on a talk of Elisa Andresen, Advanced Course on Bioinorganic Chemistry & Biophysics of Plants, summer semester 2021

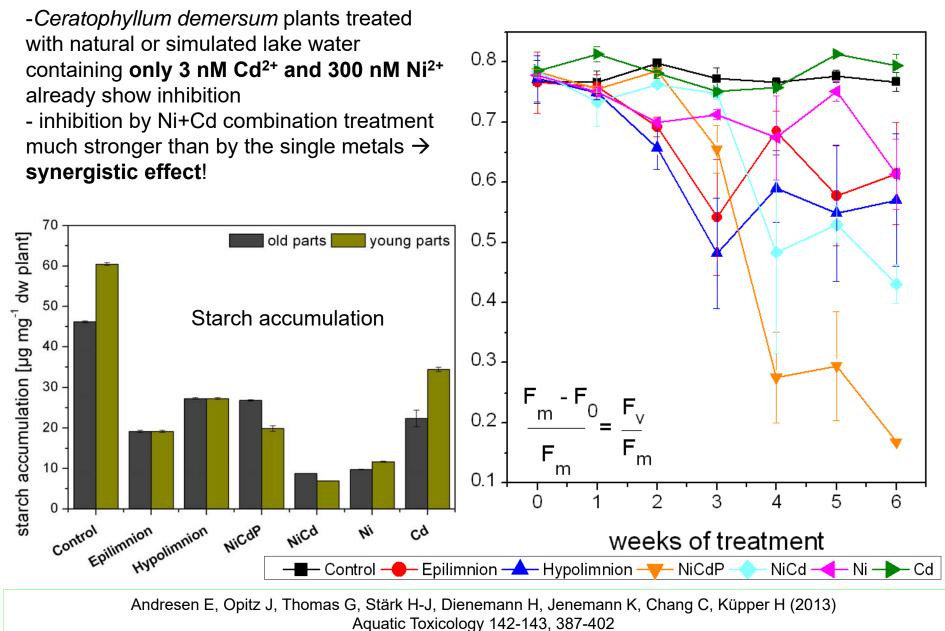
Cadmium

1	1 H 1.008																		2 He 4.0026
2	3 Li 6.94	4 Be 9.0122												5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
3	11 Na 22.990	12 Mg 24.305												13 AI 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 CI 35.45	18 Ar 39.948
4	19 K 39.098	20 Ca 40.078		21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.549	30 Zn 65.38	31 Ga 9.723	32 Ge 72.63	33 As 74.922	34 Se 78.96	35 Br 79.904	36 Kr 83.798
5	37 Rb 85.468	38 Sr 87.62		39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.96	43 Tc [97.91]	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	4 Ag 10787	48 Cd 112.41	29 In 117.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
6	55 Cs 132.91	56 Ba 137.33	*	71 Lu 174.97	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 OS 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 1 204.38	82 Pb 207.2	83 Bi 208.98	84 Po [208.98]	85 At [209.99]	86 Rn [222.02]
7	87 Fr [223.02]	88 Ra [226.03]	**	103 Lr [262.11]	104 Rf [265.12]	105 Db [268.13]	106 Sg [271.13]	107 Bh [270]	108 HS [277.15]	109 Mt [276.15]	110 DS [281.16]	111 Rg [280.16]	112 Cn [285.17]	113 Uut [284.18]	114 FI [289.19]	115 Uup [288.19]	116 LV [293]	117 Uus [294]	118 Uuo [294]
*Lanthanoids * La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb																			
"La	nthanoid	15		La 138.91 89	Ce 140.12 90	Pr 140.91 91	Nd 144.24 92	Pm [144.91] 93	Sm 150.36 94	Eu 151.96 95	Gd 157.25 96	Tb 158.93 97	Dy 162.50 98	Ho 164.93 99	Er 167.26 100	Tm 168.93 101	Yb 173.05 102		
**Actinoids		**	Ac [227.03]	Th 232.04	Pa 231.04	U 238.03	Np [237.05]	Pu [244.06]	Am [243.06]	Cm [247.07]	Bk [247.07]	Cf [251.08]	ES [252.08]	Fm [257.10]	Md [258.10]	No [259.10]			

www.webelements.com

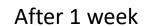
Cadmium in the environment

- Rather rare element in Earth's crust (0.1 - 0.5 ppm)
- Some natural sites, associated with ZnS
- Anthropogenic contamination, e.g. ore mining, some fertilizers, car traffic, cigarette smoke, industrial waste, NiCd-batteries



www.wikipedia.com

Cd toxicity – prominent diseases


- Itai-itai disease (japanese ouch-ouch sickness)
- 1 of the 4 big pollution diseases in Japan
- Mass cadmium poisoning in Japan, cadmium release into rivers by mining
- Severe pains in joints and spine, softening of the bones, kidney failure
- The mining companies were successfully sued for the damage

Heavy metal toxicity induced inhibition of photosynthesis at nanomolar concentrations

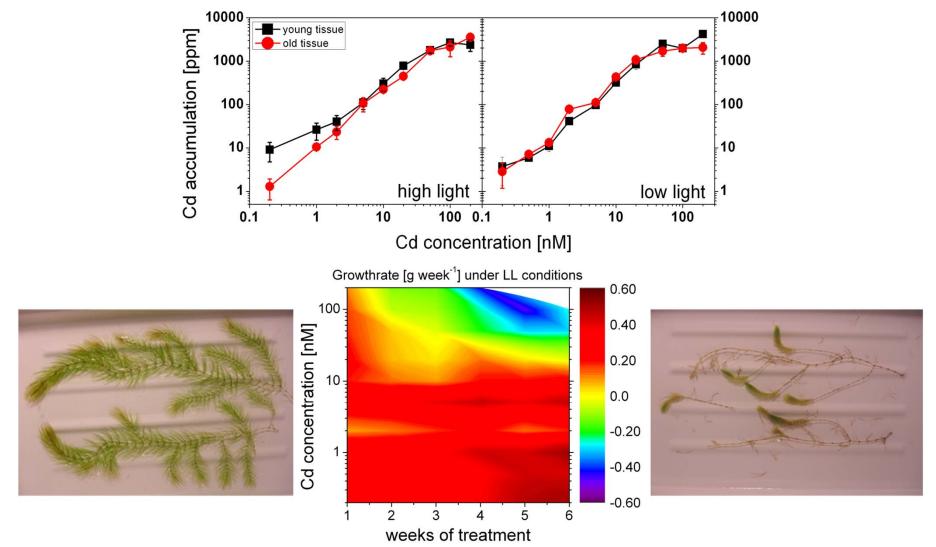
Growth inhibition

Before treatment start

After 3 weeks

After 2 weeks

After 4 weeks



C. demersum treated with 200 nM Cd for 4 weeks

Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258.

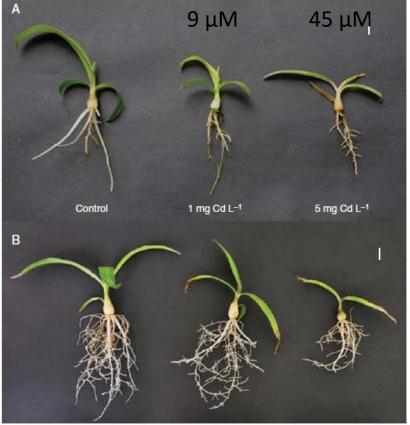
Accumulation of Cd and growth

 \rightarrow Already low nanomolar Cd is toxic for sensitive plants

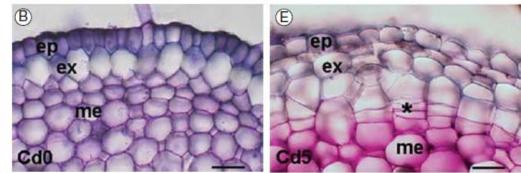
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258.

Cd in plants

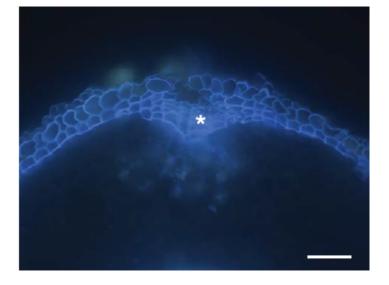
Toxicity


- 1) Roots
- 2) Photosynthesis
- 3) Reactive oxygen species
- 4) Genotoxicity
- 5) Stress prevention

Beneficial effects ?!

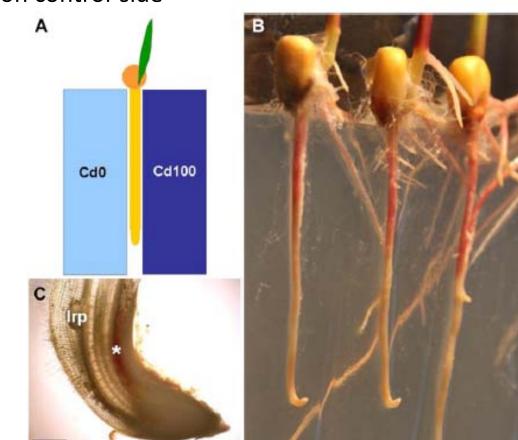

Cadmium toxicity in plants – 1: Roots

First organ which gets affected


Reduced growth after Cd treatment

More layers of hypodermal periderm

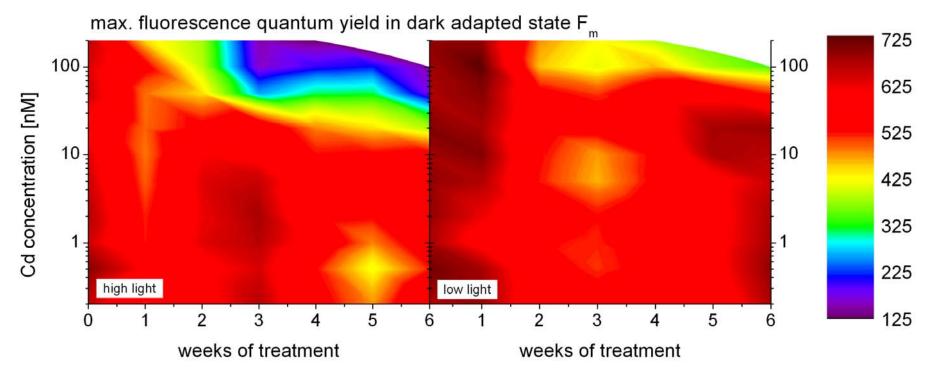
More layers & suberized cell walls (*) like after injury of root surface


Lux et al., Annals of Botany 107:285-292, 2011

- Maize seedlings with proper roots placed between 2 agar blocks

- one of which contained Cd (50 or 100 μM), grown in phytochamber under nature-like conditions

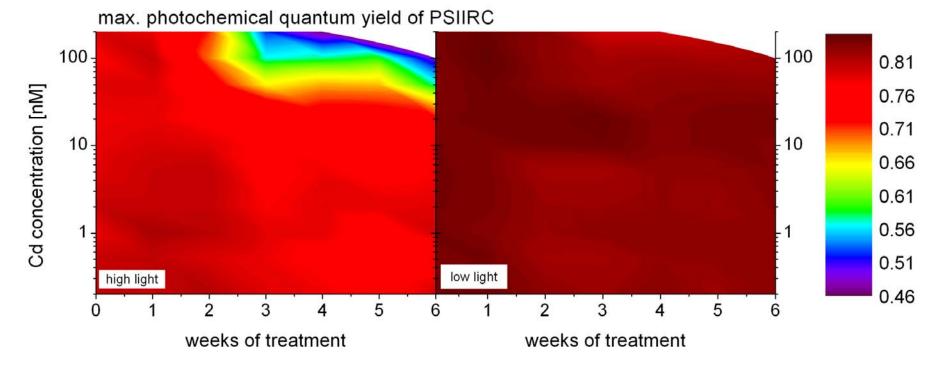
 \rightarrow Roots bending towards the Cd-containing agar \rightarrow due to growth stop on the Cd-side & continued growth on control-side


Lignification on Cd-exposed side (*) and initiation of lateral root primordium (lrp)

Cadmium toxicity in plants – 2: Photosynthesis

- Indirect measurement: Growth, O₂ production
 / CO₂ consumption
 - Diminishing the Chl/pigment/protein content
- Direct: Photosynthetic paramters via Chlorophyll fluorescence measurement

Cd affects Photosynthesis in C. demersum

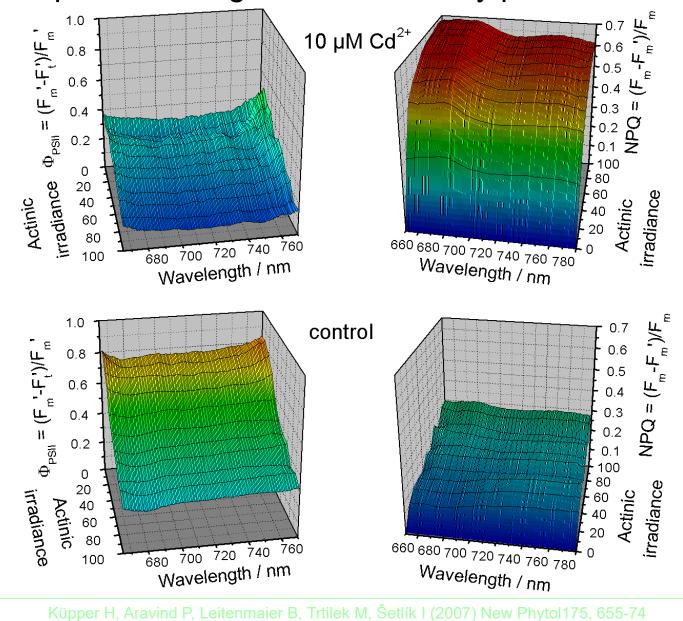

- Max. fluorescent quantum yield of PSII \rightarrow amount of fluorescent molecules \rightarrow LL plants have bigger antenna systems

- Reduced F_m towards higher concentrations and longer treatment duration \rightarrow decreased Chl content

- Reduction in week 1 due to acclimation to Cd + HL

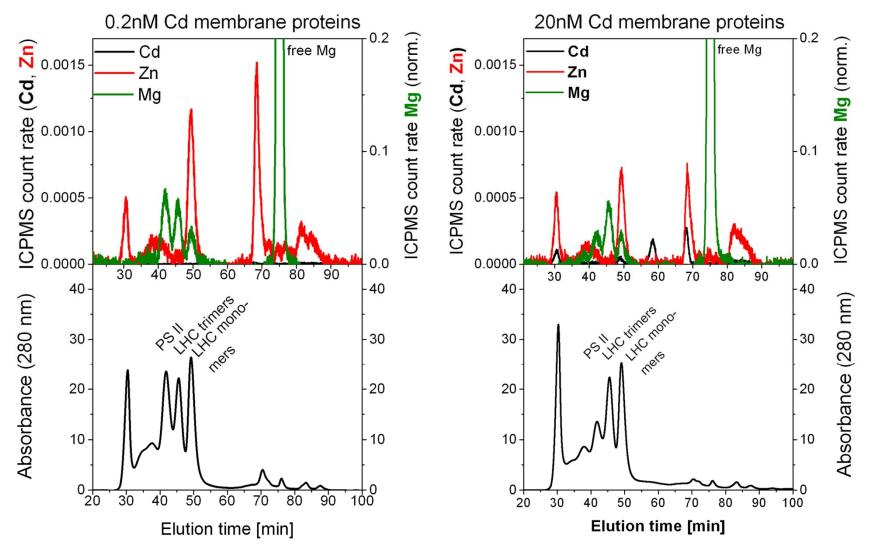
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258.

Cd affects Photosynthesis in C. demersum

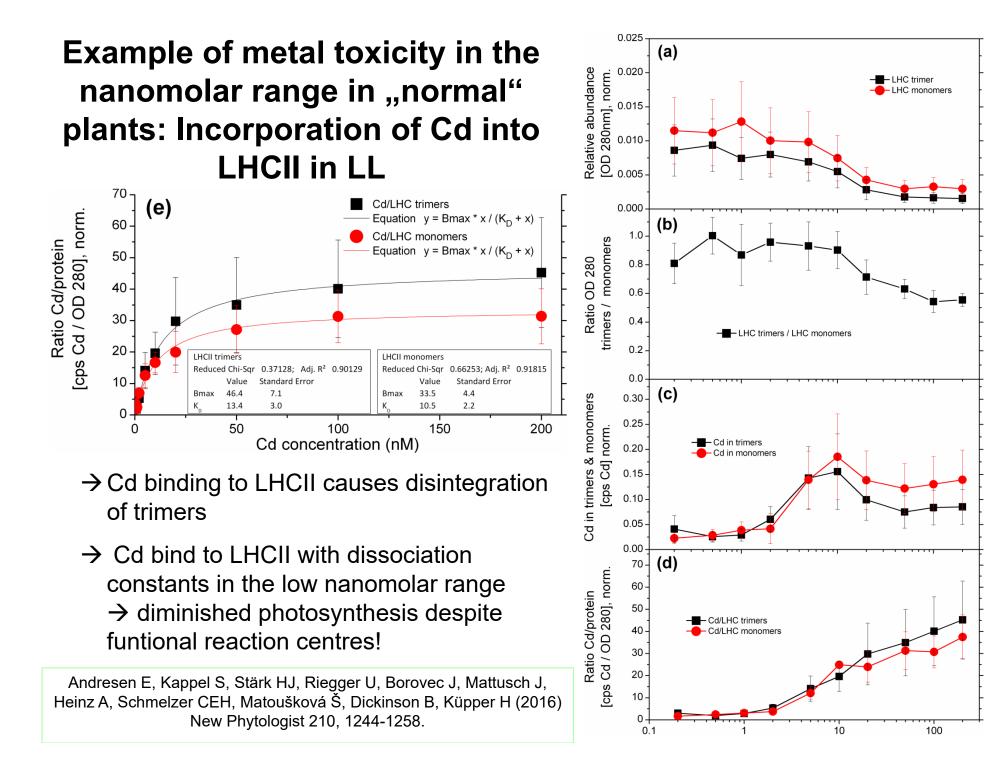

Reduced variable fluorescence $F_v/F_m = (F_m-F_0) / F_m \rightarrow$ decreased activity of PS II towards higher concentrations and longer treatment duration

HL much more affected than LL

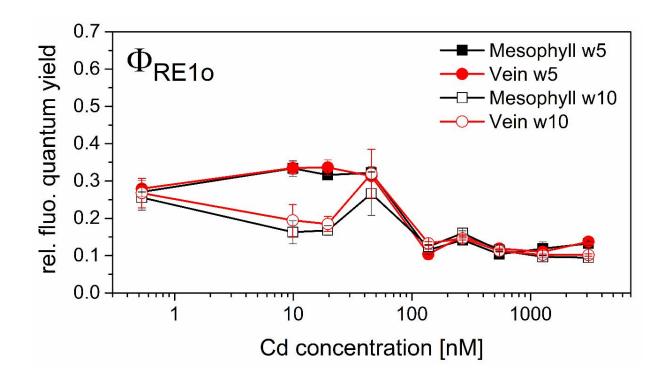
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258.


Cd-stress in the Zn-/Cd-hyperaccumulator T. caerulescens:

Spectral changes of PSII activity parameters



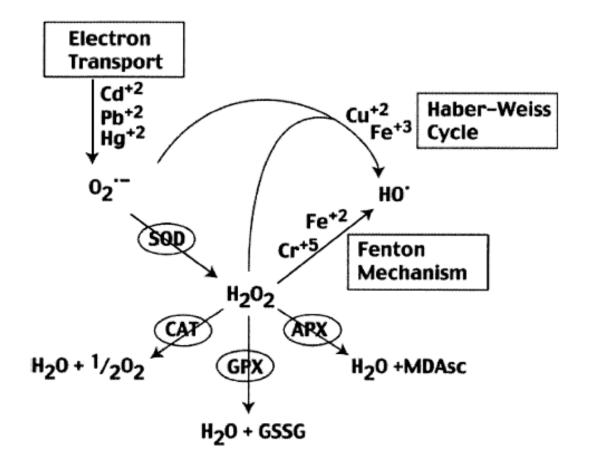
Cd stress in *C. demersum*: Incorporation of Cd into proteins in LL analysed by metalloproteomics via HPLC-ICP-MS



→ Cd binding to main light harvesting antenna LHCII in LL

Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258.

Chronic Cd toxicity in the nanomolar range in soybean plants: additional inhibition of electron transfer to PSI



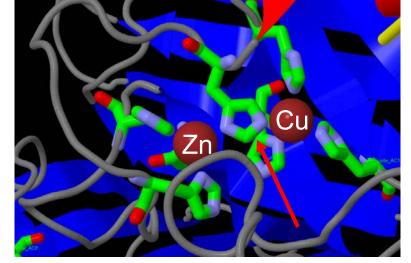
→ Cd inhibits electron flow to PSI already in the environmentally relevant nanomolar range

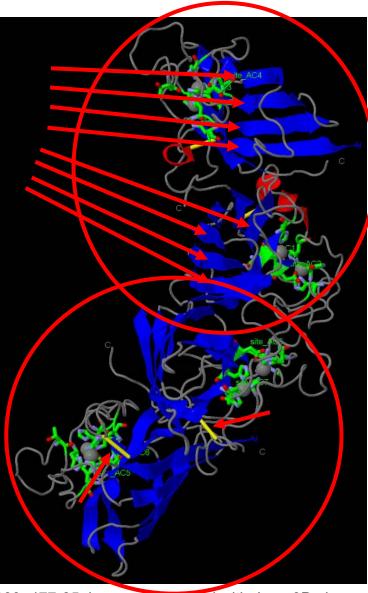
Andresen E, Lyubenova L, Hubáček T, Bokhari SNH, Matoušková Š, Mijovilovich A, Rohovec J, Küpper H (print: 2020, published online 24 November 2019) Journal of Experimental Botany 71, 1628-1644

ROS and Cadmium

• Cadmium redox inert \rightarrow No Fenton reaction!

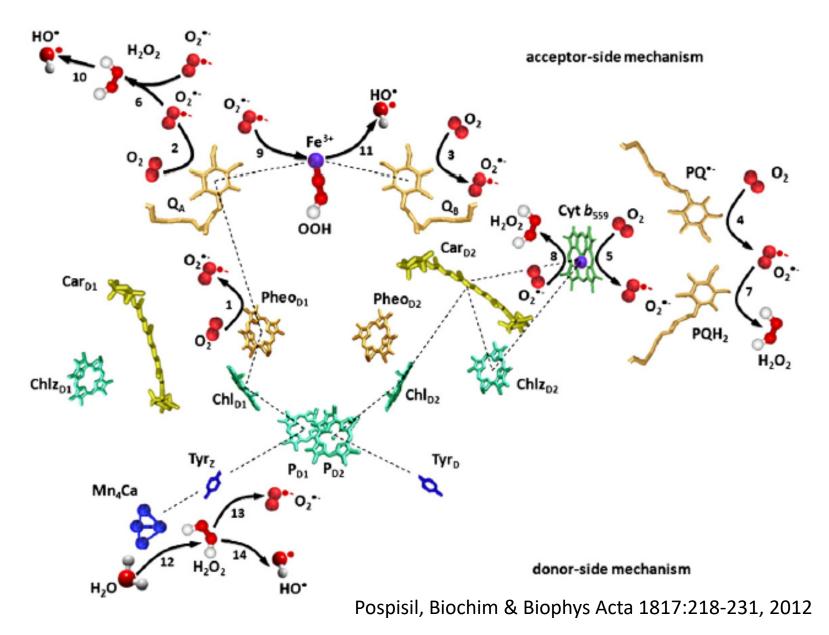
Fenton: Fe(II) + $H_2O_2 \rightarrow \rightarrow$ Fe(III) + $R^* + OH^- + H_2O$


"Biggest source of ROS in animal cells" ...


 \rightarrow NEVER shown *in vivo*!

Pinto, Journal of Phycology 39:1008-1018, 2003

Possible Target for Cd toxicity: Superoxide dismutase (SOD), in plants a Cu/Zn enzyme


Substitution of Zn by Cd in SOD may contribute to oxidative stress during Cd toxicity

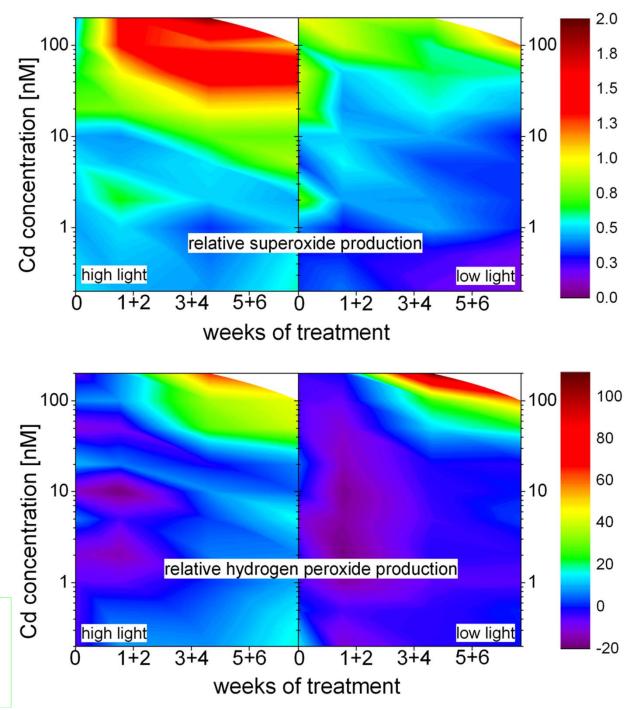
Spinach SOD, From: Kitagawa Y et al., 1991, J Biochem 109, 477-85, images generated with Jena 3D viewer

Photosynthesis-related ROS

ROS and Cadmium

ROS production

Removal of ROS


- Cd interferes with photosynthesis / respiration
 → electrons transferred to O₂
- In response antioxidant enzymes

Cd replaces Zn in SOD (e.g.)
 → less functional SOD

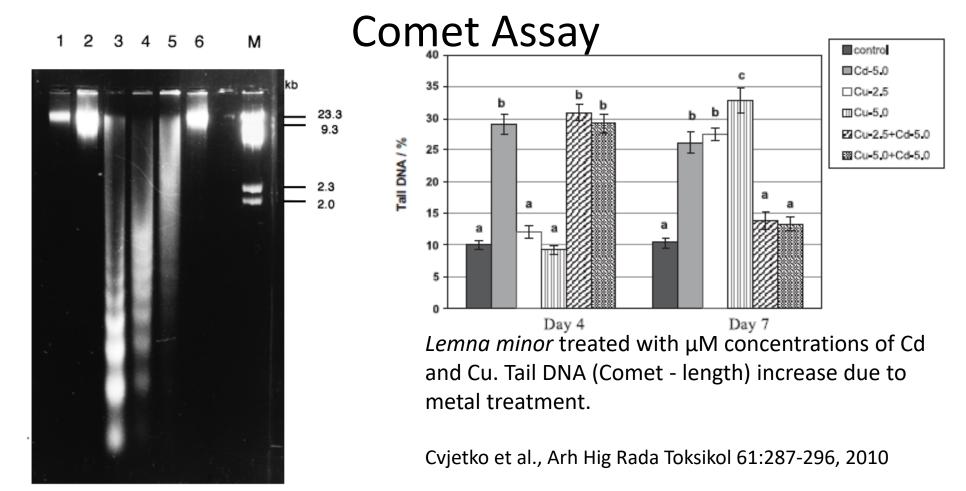
Production of reactive oxygen species (ROS) during Cd-stress in HL vs. LL

→ Cd-induced formation of ROS stronger in HL

→ superoxide formation starts at lower Cd concentrations than peroxide formation

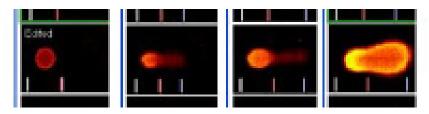
Andresen E, Kappel S, Stärk HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matoušková Š, Dickinson B, Küpper H (2016) New Phytologist 210, 1244-1258. Influence on antioxidant enzymes

- Lower Cd concentrations and shorter treatment duration tend to increase the antioxidant system
- Longer exposure and higher Cd concentrations lead to decreased activity or content of the antioxidants

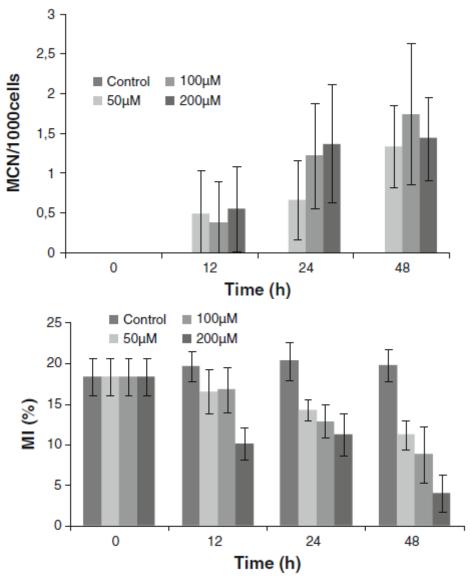

Cadmium toxicity in plants – 4. Genotoxicity

- Induction of DNA damage by
 - direct interaction with the nucleotides
 - modifications like base and sugar lesions, DNA strand breaks, destruction of DNA-protein crosslinks etc.
 - inhibiting DNA repairing enzymes
 - Induction of ROS, ROS lead to lipid peroxidation, which causes membrane damage and production of mutagenic aldehydes

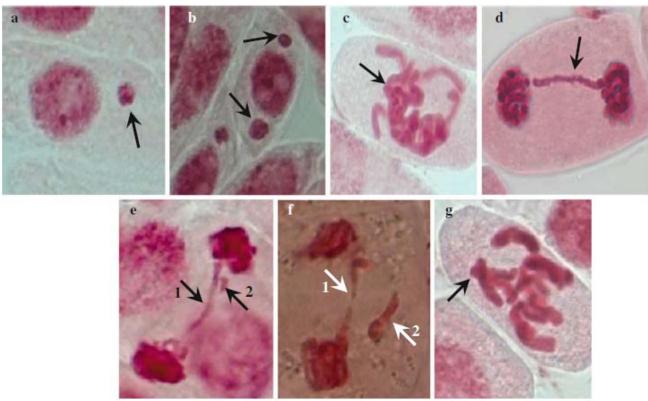
Methods to detect Genotoxicity


- DNA Analyses
 - Gelelectrophoresis and Comet Assay
 - Random amplification of polymorphism DNA (RAPD)
- DNA / Chromosome Analyses
 - Micronuclei formation
 - Sister chromatid exchange
 - Chromosomal aberrations
- Upregulation of DNA-related / repairing enzymes

DNA disruption – Gelelectrophoresis and


1: DNA from control plant, 2:-6: DNA from plants treated with Cd 10, 50, 75, 100, 1000 μM

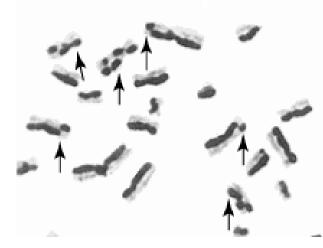
Fojtova & Kovarik, Plant, Cell & Envir. 23:531-537, 2000


From the CometAssay Manual, Trevigen^R

Micronuclei & Mitotic index

- *Vicia* root meristem cells; established assay
- Micronuclei formation due to malfunctioning cell division
- Dose and time dependent
 - Cd treatment increases MCN
- Mitotic index: ratio of cells in metaphase stage to all cells
 - Cd treatment reduces MI

Chromosomal aberrations


Vicia root meristem cells a, b, e, f = 50 μ M Cd c, d, g= 200 μ M Cd

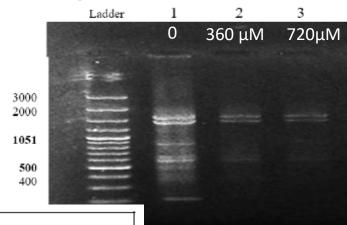
a & b = micronuclei c = sticky chromosome d = chromosome bridge e = "" + break f = "" +isolated chromosome g = laggered chromosome in metaphase

Souguir et al., Ecotoxicology 20:329-336, 2011

Sister chromatid exchange

-Exchange of identical parts of both sister chromatids in the same chromosome after / during DNA replication
-As DNA sequence identical, exchange does not lead to genetic information change (≠ crossing over)
-Happens in normal cells, but enhanced after treatment with toxic / radioactive substances

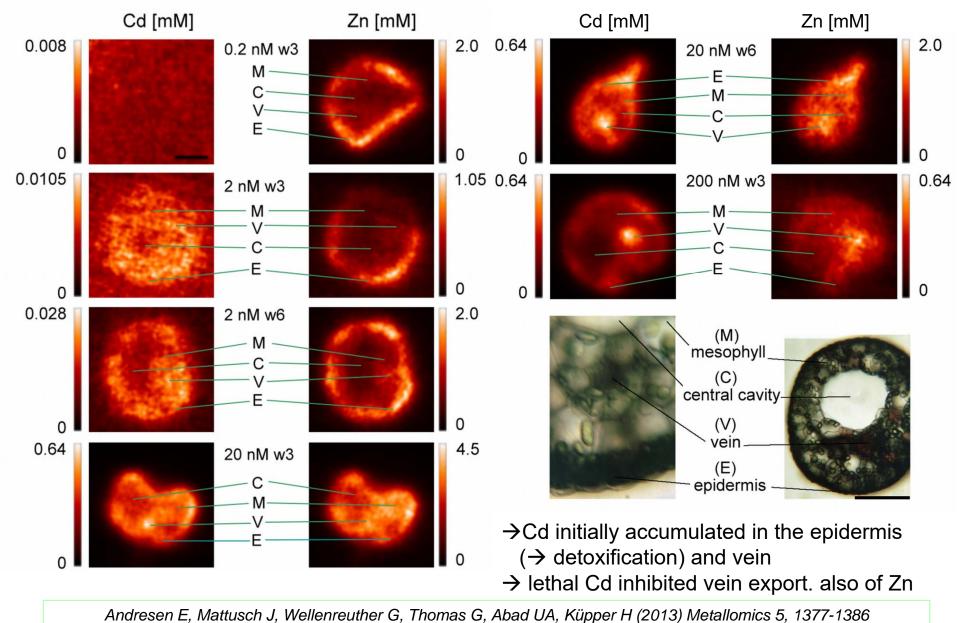
Test substance	Concentration	SCEs/metaphase (mean ± SE)	MI (mean ± SE)
Negative Control (Hoagland's nutrient Solution)	0	6.26 ± 0.29	11.80 ± 0.11
Cadmium nitrate (µM)	50	6.63 ± 0.3	$9.70 \pm 0.26^{***}$
	100	7.43 ± 0.04**	7.16 ± 0.32***
	200	$7.90 \pm 0.07^{***}$	$1.16\pm0.03^{\star\star\star}$
Positive control (Cyclophosphamide, µg/mL)	5	$12.11 \pm 0.06^{\star\star\star}$	$2.36 \pm 0.31^{***}$


** (P < 0.01) and *** (P < 0.001) compared with negative control.

From: http://www.siteklabs.com/GenTox/ MammalianCellCytogenetics.html

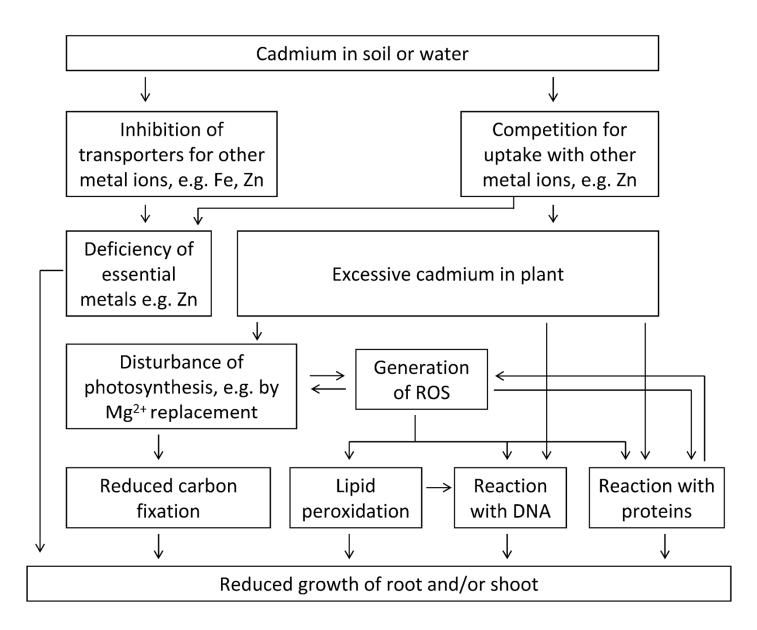
Ünyayar et al., Turk J Biol 34:413-422, 2010

Random amplification of polymorphism DNA analyses (RAPD)


- Cd interacts with DNA / induces mutation
- New / disappearing primer binding sites
- \rightarrow New / disappearing bands on gel

	Treatments									
Primers names	Total bands in control	40 (mgL ⁻¹ Appearance of new bands) Cd concentration Disappearance of control bands	80 (mgl Appearance of new bands	L ⁻¹) Cd concentration Disappearance of control bands					
OPA-2	1679, 1500, 1205, 874, 657, 603, 513, 221		1205, 874, 513, 221	900	1205, 874, 513, 221					

Shahrtash et al., J of Cell & Molecular Research 2(1):42-48, 2010


Distribution of Cd and its effect on Zn distribution in the nonaccumulator shoot model *Ceratophyllum demersum*

Changing distribution of Cd and Zn

Increasing Cd:

- Higher Cd concentration in leaves
- Increased sequestration into nonphotosynthetic tissues
- Re-distribution of Zn \rightarrow inhibited export out of vein

Andresen E, Küpper H (2013) Cadmium Toxicity in Plants. In: Cadmium: From Toxicity to Essentiality, "Metal Ions in Life Sciences Vol. 11;

Summary Cd toxicity

- Threshold concentration for most toxic effects: 20nM
 Most fluorescence parameters, growth, pigments
- First site of inhibition: photosynthetic apparatus
 ROS follow reaction
- Direct inhibition of PSIIRC only pronounced in HL
- In LL binding of Cd to LHCII already below 20nM
- Toxicity more pronounced under HL conditions
 Chl in LHCII acts as buffer under LL

All slides of my lectures can be downloaded from my workgroup homepage

Biology Centre CAS → Institute of Plant Molecular Biology → Departments → Department of Plant Biophysics and Biochemistry, *or directly* http://webserver.umbr.cas.cz/~kupper/AG_Kuepper_Homepage.html