Heavy Metals and Plants - a complicated relationship Biotechnological use of heavy metal accumulation in plants

Heavy metal-hyperaccumulation in the Wild West

modified from: http://strangematter.sci.waikato.ac.nz/

Why phytoremediation?

- Low-cost method: soil does not have to be removed
- In some cases, metals may be recovered
- Final removal of pollution possible (in contrast to covering up polluted sites as done earlier)

Excavation and Fill

\$50,000 - 100,000

Phytoextraction

\$5,000 - 8,000

from: http://urbanomnibus.net/2010/11/from-brownfields-to-greenfields-a-field-guide-to-phytoremediation/

Phytovolatilization Α Phytoextraction Phytodegradation Phytodegradation Phytostabilization = Contaminant = Stabilized contaminant = Gaseous state of a contaminant = Degraded contaminant

© 2011 Nature Education All rights reserved.

Types of phytoremediation

- Phytoextraction: removal of toxic substances by uptake usually into shoots
- Rhizofiltration: removal of toxic substances from water by adhesion to roots of swamp plants)
- Phytostabilisation: prevention of metal leakage from contaminated soils
- Phytodegradation: detoxification of pollutants by metabolisation in plants
- Phytovolatilisation: re-distribution of pollutants by transformation into volatile forms

© 2011 Nature Education All rights reserved.

Mercury volatilisation by transgenic plants

Rugh CL, et al, 1996, PNAS 93, 3182-3187

• Reduction by reductases, e.g. $Hg^{2+} --> Hg_0$, $Cu^{2+} --> Cu^+$

Plants with an unusual appetite: Heavy metal hyperaccumulation

Effects of Ni²⁺ addition on hyperaccumulator plant growth and Ni²⁺ concentration in shoots

Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) J Exp Bot 52 (365), 2291-2300

Cadmium deficiency in the Cd/Zn hyperaccumulator Thlaspi caerulescens

With 10 µM cadmium in the nutrient solution --> healthy plants

Without cadmium in the nutrient solution --> damage due to attack of insects

Accumulation of metals in CdZn-hyperaccumulators

Bioaccumulation coefficients drastically vary between ecotypes of the same species, e.g. in *Thlaspi caerulescens* (Ganges ecotype vs. other ecotypes)

→ Potential for breeding!

Accumulation of metals in CdZn-hyperaccumulators

...but this does not apply to all metals!

Use of Hyperaccumulators for cleaning up soils: Phytoremediation

→ Due to the high bioaccumulation coefficient of hyperaccumulators, metals are concentrated in a small amount of biomass.

McGrath SP, Zhao FJ (2003) Curr Opin Biotechnol 14: 277-82

Phytoremediation with different species

Plant species	Max. Cd mg/kg DW	Biomass t DW/ha	Cd-removal g/(ha*year)	
Arabidopsis halleri	100	2	20	
Thlaspi caerulescens (Prayon)	250	5	1250	
Thlaspi caerulescens (S. France)	2500	5	12500	
Dichapetalum gelonoides	2.1	5	10	
Athyrium yokosense	165	2	330	
Arenaria patula	238	2	476	
Sedum alfredii	180	5	900	
Willow or poplar	2.5	20	50	
Upland Rice	40.	10	400	

Data from field experiments of Rufus Chaney (USA), presented on a conference in Hangzhou 2005

Chaney RL, et al (2005) Z Naturforsch 60c, 190-8

Zn: Presume soil has 2000 ppm Zn = $4000 \text{ kg Zn (ha-15 cm)}^{-1}$ Yield Zn in crop Zn in ash Crop $[t ha^{-1}]$ $[mg kg^{-1}]$ $[kg ha^{-1}]$ (% of soil Ni) (%) Corn (normal soil) 20 50 1.0 0.0025 0.10 Corn-Zn phytotoxicity 10 500 5.0 0.0125 0.50Thlaspi 5 25000 125. 3.12 40 Improved *Thlaspi* 6.25 10 25000 250. 40

Cd: Presume soil has 20 ppm Co Crop	l = 40 kg Cd (Yield [t ha ⁻¹]	$(ha-15 cm)^{-1}$ [mg kg ⁻¹]	Cd in crop [kg ha ⁻¹]	(% of soil Cd)	Cd in ash (%)
Corn	20	0.5	0.01	0.025	0.001
Corn	10	5	0.05	0.125	0.005
<i>Thlaspi</i> 'Prayon'	5	200	1.0	2.5	0.40
<i>Thlaspi</i> S. France	5	2000	10.0	25.	4.00
<i>Thlaspi</i> Improved	10	2000	20.0	50.	4.00

→ Due to its high bioaccumulation coefficient and despite its small biomass, Thlaspi caerulescens (Ganges ecotype) is so far the best plant for Cd phytoremediation

→ While Cd phytoremediation is efficient with *Thlaspi caerulescens*, Zn phytoremediation is inefficient due to lower bioaccumulation coefficient and high soil Zn

Use of Hyperaccumulators for cleaning up soils: Factors influencing phytoremediation capacity of plants

Use of
Hyperaccumulators for
cleaning up soils:
passage of metals in
plants & genes involved
in some steps

Verbruggen N, Hermans S, Schat H (2009) New Phytol 181, 759-96

Stelar
Epidermis Cortex Endodermis Pericycle parenchyma Xylem vessels

Soil factors influencing phytoremediation – pH and labile metal

- → if labile pool is constantly replenished, labile contaminant in soil decreases slower, but total soil contamination decreases faster than in the case of a fixed labile pool
- → detoxification of As works much better

in alkaline soils (soil 8: pH 8.1) than

in acidic soils (soil 17: pH 5.6)

Shelmerdine P, et al. (2009) Environ Pollut 157, 1589-1596

dashed lines: constant equilibrium solid lines: no replenishment of labile pool

Variants of phytoremediation: continuous vs. chelate-assisted

→if labile pool is very small, phytoremediation may be enhanced by chelate application

Salt DE, Smith RD, Raskin I (1998) Ann Rev Pl Phys Pl Mol Biol 49, 643-68

Soil factors influencing phytoremediation – toxic metals

→ toxic non-accumulated metals (e.g. Cu for *T. caerulescens*) inhibit plant growth and diminish uptake of hyperaccumulated metals

Walker DJ, Bernal MP (2004) Water Air Soil Pollut 151, 361-72

Soil factors influencing phytoremediation – toxic metals

→ selection of resistant individuals may solve the problems of cocontamination of soils with non-accumulated toxic metals

Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Götz B, Küpper H (2009) Plant Physiology 151, 715-731

Phytoextraction in action

The location: a base-metal smelter, South Africa

The problem: Ni contamination over 5ha due to Ni salt storage and spillage

The solution: phytoextraction using a native nickel-accumulating species

Application of hyperaccumulators for phytomining

Vegetation on naturally nickel-rich soil (Serpentine). Such soil is neither usable for agriculture (Ni-concentration far too high) nor for conventional ore mining (Ni-concentration too low).

Nickel-hyperaccumulators on such soils enrich the Ni to several percent of their shoot dry mass. After burning them, the ash contains 10 to 50% Ni, so that it can be used as a "bio-ore".

Such a plant mine can, according to field studies under commercial conditions, yield around 170 kg Ni per hectare and year. At the current (average Jan-July 2012) Ni price of around 14 € per kg raw nickel these are about 2400 € per hectare and year.

Phytomining with different species

Table I. Crop and hyperaccumulator plant models for Ni phytomining. The second *Alyssum murale* listing presumes that plant breeding has been used to develop a commercial cultivar for phytomining Ni (Li *et al.*, 2003). Maize is modeled as a forage crop; ash weight is about 5-10% of dry weight.

Assume soil contains 2500 mg Ni $kg^{-1} = 10,000 kg Ni (ha-30 cm)^{-1}$					
Species	Yield [t ha ⁻¹]	[mg kg ⁻¹]	Ni in the cr [kg ha ⁻¹]	op (% of soil Ni)	Ash-Ni (%)
Maize (100% normal)	20	2	0.04	0.0004	0.008
Maize (50% normal yield)	10	100	1	0.01	0.20
Wild <i>Alyssum Alyssum</i> cultivar	10	20,000	200	2.0	20-40
	20	30,000	600	6.0	25-50

Chaney RL, et al et Baker AJM (2005) ZNaturforsch60c, 190-198

→ Due to their high bioaccumulation coefficient and despite their small biomass, already wild *Alyssum* species yield many times more nickel per heactare than high-biomass non-accumulator plants, and in contrast to the latter the ash of *Alyssum* contains enough Ni to be used as an ore

Phytomining: potential of selecting plant populations with highest phytoextraction

Li YM, Chaney R, et al et Baker A et Reeves R (2003) Plant & Soil 249, 107-15

→ large variation in metal accumulation between populations of hyperaccumulator species allows for efficient selection of high-yield ecotypes

Economic evaluation of Ni phytomining based on 69kg Ni per ha

- With adapted agricultural practices :
 - Biomass production : 6 t per ha
 - Ni concentration: 1,15%
- Phytoextraction: 69 kg Ni per ha
- If:
 - Production costs: \$390 ha⁻¹
 - Land loan: \$150 ha⁻¹
 - Commercial value of Ni \$24 kg⁻¹ (2008)
 - Recovery (e.g. hydrometallurgy): 20% of Ni value
- Then: annual value of a phytomining crop:
 - 69 kg Ni ha⁻¹ x \$24 kg⁻¹ Ni = **\$ 1 656 ha⁻¹**
- Economic result :
 - $-1656 (390 + 150) = $1116 ha^{-1}$

Therefore: phytomining of Ni offers a financial revenue to farmers on areas with low agricultural potential

Bani, Aida & Barbaroux, Romain & Simonnot, Marie-Odile & Mercier, Guy & Blais, Jean-François & Plasari, Edouard & Echevarria, Guillaume & Morel, Jean-Louis. (2011). Phytomining, a means for soil remediation and metal recovery. The case of nickel.

Phytomining in the tropics

First agromining field trial at Pahu (Sabah - Malaysia) — 1.5 ha with *Rinorea bengalensis* + *Phyllanthus rufuschaneyi*.

→ Use of woody species for phytomining soils in Malaysia, yield: approx 270 kg Ni/ha

Characteristics	Rinorea bengalensis	Phyllanthus rufuschaneyi	
Size	30 m tree	3 m shrub	
Maximum Ni concentration in leaves	2.7%	6%	
Propagation	Seeds	Cuttings	

Phytomining in the tropics

The first tropical 'metal farm': Phyllanthus rufuschaneyi

After 1.5 years

No harvesting

(Van der Ent, 2016-2018)

→ Use of woody species for phytomining soils in Malaysia, yield: approx 270 kg Ni/ha

Characteristics	Rinorea bengalensis	Phyllanthus rufuschaneyi
Size	30 m tree	3 m shrub
Maximum Ni concentration in leaves	2.7%	6%
Propagation	Seeds	Cuttings

Talk of Alan Baker at ICOBTE in Nanjing, 2019

Phytomining in China

One big mining company currently employing phytomining

http://nickel.vale.com/development/reports/ehs/2002/performance_profiles/phytomining/Default.asp

→ Use of *Alyssum* species for phytomining soils in Indonesia

...And another one that tested phytomining, but did a bad job → Hyperaccumulators as invasive species!

http://www.co.josephine.or.us/Files/AlyssumStory.pdf

- •In the late 1990's Alyssum was introduced to the Illinois Valley at an experimental site by USDA, OSU and Viridian LLC
- •2002 Viridian Resources LLC planted 9 sites near O'Brien, OR
- •2005 Alyssum found growing wild and far from planted sites
- •2009 Alyssum murale and A. corsicum petitioned for listing, then listed, as a noxious weed in OR
- •2009 -2010 Large scale control efforts begin, including planted sites abandoned by

Viridian Resources

red: planted sites (2002)

yellow: escaped sites (2010)

Summary

All slides of my lectures can be downloaded from my workgroup homepage

Biology Centre CAS → Institute of Plant Molecular Biology → Departments

→ Department of Plant Biophysics and Biochemistry,

or directly

http://webserver.umbr.cas.cz/~kupper/AG_Kuepper_Homepage.html