Heavy Metals and Plants - a complicated relationship Metals in Photosynthesis

Heavy metal hyperaccumulation in the Wild West

modified from: http://strangematter.sci.waikato.ac.nz/

Dose-Response principle for heavy metals

Metal sites in photosynthetic proteins

Photosynthesis related proteins with metal centres 1. Light harvesting complexes

LHCII structure

- > usually trimers
- > structure stabilised by Chl

- binding via axial ligands on Mg²+
- energy transfer depends on 1/r⁶

From: commons.wikimedia.org

Photosynthesis related proteins with metal centres 1. Light harvesting complexes → Chl biosynthesis

Photosynthesis related proteins with metal centres 1. Light harvesting complexes → Chl biosynthesis

Glutamate Flu GluTR ALA Siroheme branch (?)Protoporphyrin IX MgCh FeCh Mg-protoporphyrin IX Heme ATP MgMT Phytochromobilin Mg²⁺ Mg-protoporphyrin X monomethyl ester GUN4 MgCy Thioredoxin Divinyl protochlorophylide a Chlorophyll a

Photosynthesis related proteins with metal centres 1. Light harvesting complexes

Chl biosynthesis regulation

- activation by substrates
- > inhibition by intermediate products

From: Tanaka R, Tanaka A (2007) Ann Rev Plant Biol 58, 321-46

Photosynthesis related proteins with metal centres 1. Light harvesting complexes: Transfer times between Chls towards & in PSIIRC

 \rightarrow fast, but still too slow for singlet excited state lifetimes of most ChI complexes with central ions other than Mg²⁺! \rightarrow choice of Mg²⁺ despite instability of the complex

From: vanGrondelle R, Novoderezhkin VI, 2006, PCCP8, 793-807

Photosynthesis related proteins with metal centres 2. Photosystem II reaction centre – electron transport

From: Nelson N, Yocum CF, 2006, AnnRevPlantBiol 57, 521-65

- electrons are transferred from water to plastoquinone b (Q_B)
- ➤ Manganese / calcium, magnesium and iron centres involved in e- transport

Most important manganese enzyme: Water splitting complex of PSII a) structure

Water splitting complex of the photosystem II reaction centre (b) proposed mechanism

From: McEvoy JP, Brudvig GW, 2006, Chemical Reviews 106, 4455-83

- ➤ 2 of the 4 Mn ions are redox-active (3+/4+), accepting electrons from water and transferring them to P680
- ➤ Ca²⁺ helps in binding the water

Non-heme iron in the photosystem II reaction centre

From: McEvoy JP, Brudvig GW, 2006, Chemical Reviews 106, 4455-83

From: Utschiq LM, Thurnauer MC, 2004, AccChemRes37, 439-47

- bound by 4 histidines and 1 glutamate near the stroma surface of the PSIIRC
- guides/helps electrons tunnelling from Q_A to Q_B

Photosynthesis related proteins with metal centres PSIIRC: generation of ROS

Photosynthesis related proteins with metal centres 3. Cyt $b_6 f$ complex: Structure

From: Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL, 2006, AnnRevBiochem75, 769-90

Structural characteristics

- > Homodimer, each monomer consisting of 8 subunits totalling about 109 kDa
- ➤ Each monomer contains 13 transmembrane helices, and beta sheets in the Rieske subunit

Photosynthesis related proteins with metal centres 3. Cytb₆f complex: Mechanism

Functional characteristics

- transfers e- from PQ to plastocyanin (PC),
- ▶ It uses the difference in potential betwen Q_B and PC for translocating a proton via 2x2 heme b groups and 2x1 heme x group
- Flectrons are transferred from the heme b groups to PC via a "Rieske" [2Fe2S]-cluster and a heme f group
- Cyclic electron transport occurs via coupling of ferredoxin to heme x

From: Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL, 2006, AnnRevBiochem75_769-90

Photosynthesis related proteins with metal centres 3. Cytb₆f complex: Mechanism

Cyclic electron transport occurs via coupling of ferredoxin to heme x

From: Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL, 2006, AnnRevBiochem75 769-90

Photosynthesis related proteins with metal centres Interaction between cytochrome f and plastocyanin

From: Cruz-Gallardo I, et al. (2012) FEBS Lett 586, 646-52

- > very short-lived interaction: (ns range), conformational changes make binding transiently favourable (\rightarrow negative \triangle G)
- ▶ both pathways (strain → rigid binding and direct binding) occur

Photosynthesis related proteins with metal centres 4. Plastocyanin

From:
www.fli-leibniz.de
with reference to data
of Inoue T, Sugawara
H, Hamanaka S,
Tsukui H, Suzuki E,
Kohzuma T, Kai Y,
1999, Biochemistry
38, 6063-9

Structural characteristics

- ➤ about 100 amino acids, soluble protein
- > type 1 ("blue") copper protein
- > copper bound by 2 His, 1 Cys, and 1 Met residue in distorded tetrahedral geometry

Photosynthesis related proteins with metal centres 4. Plastocyanin

Functional characteristics

- ➤ Oxidised (Cu²⁺) plastocyanin accepts electron from Cyt_{b6f} complex,
- ➤ Reduced (→ Cu⁺) plastocyanin diffuses to the PSIRC
- ➤ Plastocyanin releases the electron (Cu⁺ → Cu²⁺)
- ➤ Rigid protein structure facilitates fast red/oxchanges, but recent data show that copper binding still causes changes in structure ("induced rack" rather than "entatic state")

His87 Cys84 Met92

From: Shibata N, Inoue T, Nagano C, Nishio N, Kohzuma T, Onodera K, Yoshizaki F, Sugimura Y, Kai Y, 1999, J Biol Chem. 274: 4225-30

Photosynthesis related proteins with metal centres 4. Plastocyanin coupling to PSI

From: Busch A, Hippler M (2011) BBA1807, 864-77

- coupling to PSI via "southern negative patch) of PC to positively charged N-terminal domain of PsaF
- copper centre of PC near double Trp acting as electron channel towards P700

Photosynthesis related proteins with metal centres 5. Photosystem I reaction centre (a) Overview

PsaC PsaE PsaD PsaH PsaB PsaF

Structural characteristics

- > forms trimers
- ➤ 12 subunits per monomer
- ➤ 127/133 cofactors per monomer (cyanos/plants): 96/102 chlorophylls 22 carotenoids 2 phylloquinones 3 [Fe4S4] clusters 4 lipids

Photosynthesis related proteins with metal centres
5. Photosystem I reaction centre
(a) Overview

Funtional characteristics:

- ▶ primary charge separation: special pair (=P700, Chl a / Chl a' heterodimer), releases e⁻ to A₀ via A (both Chl a)
- → e⁻ transport via A1 (phylloquinone) and the [4Fe4S]-clusters F_x, F_A and F_B to the [4Fe4S]cluster of ferredoxin
- > P700 is re-reduced by plastocyanin

Photosynthesis related proteins with metal centres 5. Photosystem I reaction centre (b) iron-sulphur clusters

Function of the 4Fe4Sclusters in PSIRC

- ➤ accept electrons from the phylloquinones ("A₁")
- transfer the electrons to ferredoxin

From: Nelson N, Yocum CF, 2006, AnnRevPlantBiol 57, 521-65

Photosynthesis related proteins with iron centres Ferredoxin

Structure and function

- > usually dimer
- soluble protein with one[2Fe2S]-cluster per monomer
- ➤ transfers electrons from PSIRC to ferredoxin reductase
 (→ linear electron transport) or to the Cyt b6f complex
 (→ cyclic electron transport)

From: www.fli-leibniz.de with reference to data of Bes MT, Parisini E, Inda LA, Saraiva LM, Peleato ML, Sheldrick GM, 1999, Structure, 15;7(10):1201-11

One of the most important copper enzymes: Superoxide dismutase (SOD), in plants a Cu/Zn enzyme (a) function

From: Foyer CH et al., 1994, PlantCellEnvi17_507-23

- > Present in all aerobic organisms, particularly important in photosynthetic organisms
- > Detoxifies superoxide that was generated e.g. by photosynthesis or respiration

One of the most important copper enzymes: Superoxide dismutase (SOD), in plants a Cu/Zn enzyme

(b) structure

➤ Dimer of two identical subunits, in crystals 2 dimers together

- > Each subunit consists of:
 - 8 anti-parallel β-strands forming a flattened cylinder,
 - 3 external loops
- ➤1 Cys-Cys disulfide bond stabilises loops
- ➤ 1 Cu²⁺ and 1 Zn²⁺ per subunit
- ➤ Cu²⁺ bound by 4 His, Zn²⁺ by 3 His + 1 Aspartate
- ➤ His-63 bridges Cu²⁺ and Zn²⁺

>: K_D of copper: 10⁻¹⁵ M

Photosynthesis related Enzymes with metal centres CO₂ delivery: Cd- and Zn- carboanhydrases (a1) function

$$\begin{array}{c} O \\ \parallel \\ C \\ \parallel \\ O \end{array} + H_2O \xrightarrow[k_{-1}]{k_{-1}} \begin{array}{c} O \\ \parallel \\ HO \end{array} OH \xrightarrow{OH} \begin{array}{c} O \\ \parallel \\ HO \end{array} OH + H^+ \\ \hline Carbonic \\ acid \end{array}$$

function of carboanhydrases (from: www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=stryer&part=A1199)

- Convert carbon dioxide to bicarbonate and vice versa
- Present in all aquatic photosynthetic organisms as part of the Carbon Concentrating Mechanism (CCM)

$$HCO_3$$
- $Pump$ $Carboanhydrase$
 HCO_3 - CO_2 $Photosynthesis$
 $Plant cell$

Present in most respiratory organisms (incl. animals like us!) for removing CO₂ from the body by exhalation

$$CO_2$$
 CO₂ CO₂ HCO₃ Respiration

Animal cell

Photosynthesis related Enzymes with metal centres CO₂ delivery: Cd- and Zn- carboanhydrases (a2) reaction mechanism from CO₂ to bicarbonate

- ➤ By lowering the pK_a of water from 15.7 to 7, the binding of water to Zinc facilitates the release of a proton, which generates a hydroxide ion.
- Carbon dioxide binds to the active site of the enzyme and is positioned to react with the hydroxide ion.
- The hydroxide ion attacks the carbon dioxide, converting it into a bicarbonate ion.
- The catalytic site is regenerated with the release of the bicarbonate ion and the binding of another molecule of water.

Reaction mechanism of Zn-carboanhydrases (from: www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=stryer&part=A1199)

Photosynthesis related Enzymes with metal centres CO₂ delivery: Cd- and Zn- carboanhydrases (b) comparison of Cd- and Zn-Carboanhydrases

- Cd-CA is much larger than Zn-CA
- Cd-CA can bind both Cd and Zn. Activity with Zn slightly, but Activity with Cd much higher than in regular Zn-Carboanhydrases.

Photosynthesis related Enzymes with metal centres CO₂ delivery: Cd- and Zn- carboanhydrases (b1) structure and properties of a typical Zn-CA

- Zn-CA is a homodimer
- Each monomer consists of and α/β -domain and 3 α -helices
- •Zn²⁺ is coordinated by 2 Cys, 1 Asp and 1 His

Photosynthesis related Enzymes with metal centres CO₂ delivery: Cd- and Zn- carboanhydrases (b2) Properties and Structure of the Cd-Carboanhydrase

- •Cd-CA has 7 α -helices and 9 β -sheats,
- •Cd is at the lower End of a funnel-like substrate binding pocket
- •Cd²+ is bound by 2x Cys and 1x His, plus 1x Water (→ tetrahedral coordination).

All slides of my lectures can be downloaded from my workgroup homepage

Biology Centre CAS → Institute of Plant Molecular Biology → Departments
→ Department of Plant Biophysics and Biochemistry,
or directly

http://webserver.umbr.cas.cz/~kupper/AG_Kuepper_Homepage.html