Heavy Metals and Plants - a complicated relationship

—> Cadmium toxicity
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Cadmium in nature
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Cadmium as a micronutrient: the exception...
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Cadmium as Plant-micronutrient in

Thalassiosira weissflogii. A, B: growth of Kipper H, Kroneck PMH (2004) MIBS 44 (Sigel et al., eds), chapter 5
the algae. (Lane and Morel, 2000,

PNAS97)



Cadmium pollution in the environment

- ltai-itai disease (japanese ouch-ouch sickness), 1 of the 4 big pollution diseases in Japan

- Mass cadmium poisoning in Japan: severe pains in joints and spine, softening of the bones, kidney failure
- Cadmium release into rivers by mining, the mining companies were successfully sued for the damage

- In Europe: Cd from contamination of fertilisers in Agriculture

- Mechanistic knowledge of metal(loid) toxicity is required for realistic environmental risk assessment

- Revealing toxicity mechanisms is essential for targeted breeding of plants that are less vulnerable to stress
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Metal toxicity induced inhibition of photosynthesis

at synergistically acting nanomolar Cd+Ni concentrations

-Ceratophyllum demersum plants treated with natural or
simulated lake water containing only 3 nM Cd?* and 300 nM
Ni2* already show inhibition

- inhibition by Ni+Cd combination treatment much stronger
than by the single metals - synergistic effect!
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Growth inhibition

Before treatment start After 1 week After 2 weeks

After 3 weeks After 4 weeks

C. demersum treated with 200 nM Cd for 4 weeks

Andresen E, Kappel S, Stark HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matouskova 8, Dickinson B, Kupper H
(2016) New Phytologist 210, 1244-1258.



Accumulation of Cd and growth
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Cd toxicity in plants

1) Roots

2) Photosynthesis

3) Reactive oxygen species
4) Genotoxicity

5) Stress prevention



Cadmium toxicity in plants —
1: Roots

First organ which gets affected

Reduced growth after Cd treatment
More layers of hypodermal periderm

More layers &
suberized cell
walls (*) like
after injury of
root surface

Lux et al., Annals of Botany 107:285-292, 2011



- Maize seedlings with proper roots placed between 2 agar blocks
- one of which contained Cd (50 or 100 uM), grown in phytochamber under
nature-like conditions

- Roots bending towards the Cd-containing agar = due to growth stop on the
Cd-side & continued growth on control-side

-

Lignification on Cd-exposed
side

(*) and initiation of lateral
root primordium

(Irp)

Lux et al., Journal of Experimental Botany 62(1): 21-37, 2011



Mechanisms of sublethal vs. lethal Cd toxicity in soybean roots

- change of intracellular
localisation:
symplastic vs.
apoplastic

—> change of tissue
localisation: central
cylinder vs. unspecific

—> change of target
proteins: few vs.
unspecific

- Drastically different
mechanism of
toxicity at rarely

studied sublethal vs.

frequently studied
lethal
concentrations!
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Where does the Cd go?

Sub-cellular distribution

(measured at Cd Ka with 0.6um
resolution at beamline PETRA P6)

3- phase response to Cd toxicity

A) Initially, at sublethal concentrations with
low toxicity, Cd is sequestered into
vacuoles of the root parenchyma

B) At sublethal concentrations with high
toxicity, stronger accumulation starts in
cell walls in the vascular bundle,
starting to block micronutrient (Fe, Mo)
uptake

C) At lethal concentration, Cd
accumulates unspecifically in cell walls
throughout the root diameter, and
blocks transport of micronutrients (Fe &
Mo)

Andresen E, Flores-Sanchez |J, Briickner D, Bokhari SNH,
Falkenberg G, Kupper H (2023 Sublethal and lethal Cd
toxicity in soybean roots specifically affects the metabolome,
Cd binding to proteins and cellular distribution of Cd. Journal
of Hazardous Materials 442, 130062
https://doi.org/10.1016/j.jhazmat.2022.130062



To which exact proteins does the Cd bind at sublethal concentrations?
—>protein purification, identification and verification
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Distribution of Cd and its effect on Zn distribution in the non-
accumulator shoot model Ceratophyllum demersum

Cd [mM] Zn [mM] Cd [mM] Zn [mM]
0.008 0.2 nM w3 ; 0.64

(M)
mesophyll
&
central cavity
V)
vein

(E)

epidermis

—>Cd initially accumulated in the epidermis
(= detoxification) and vein
—> lethal Cd inhibited vein export. also of Zn

Andresen E, Mattusch J, Wellenreuther G, Thomas G, Abad UA, Kiipper H (2013) Metallomics 5, 1377-1386




Changing distribution of Cd and micronutrients under Cd toxicity

Increasing Cd:
- Roots: more aplastic Cd binding at high Cd
- Roots and leaves: more Cd in vein

- Roots and leaves: inhibition of micronutrient (Fe, Mo, Zn) transmembrane
transport by Cd

- Leaves: Increased sequestration into non-photosynthetic tissues
- Leaves: re-distribution of Zn = inhibited export out of vein



Cadmium toxicity in plants —
2: Photosynthesis

* |ndirect measurement:

— Growth, O, production / CO, consumptio: balance with O,-consuming
and CO, producing (photo-)respiration

— Diminishing the Chl/pigment/protein content

* Direct: Photosynthetic paramters via Chlorophyll fluorescence
measurement



Cd affects Photosynthetic light reactions in C. demersum
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- Max. fluorescent quantum yield of PSIl = amount of fluorescent molecules = LL plants have
bigger antenna systems

- Reduced Fm towards higher concentrations and longer treatment duration = decreased Chl
content

- Reduction in week 1 due to acclimation to Cd + HL

Andresen E, Kappel S, Stark HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matouskovéa S, Dickinson B, Kiipper H
(2016) New Phytologist 210, 1244-1258.



Cd affects Photosynthetic light reactions in C. demersum

max. photochemical quantum yield of PSIIRC
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Reduced variable fluorescence F /F,, = (F.-F,) / F,, = decreased activity of PS Il towards
higher concentrations and longer treatment duration

HL much more affected than LL

Andresen E, Kappel S, Stark HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matouskovéa S, Dickinson B, Kiipper H
(2016) New Phytologist 210, 1244-1258.



Cd-stress in the Zn-/Cd-hyperaccumulator T. caerulescens
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Substitution of Ca by Cd in water splitting
complex of PSII
would inhibit water splitting, if it would
occur at relevant Cd concentrations
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Cd stress in C. demersum: Incorporation of Cd into proteins in LL
analysed by metalloproteomics via HPLC-ICP-MS

0.2nM Cd membrane proteins 20nM Cd membrane proteins
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- Cd binding to main light harvesting antenna LHCII in LL

Andresen E, Kappel S, Stark HJ, Riegger U, Borovec J, Mattusch J, Heinz A, Schmelzer CEH, Matouskova S, Dickinson B,
Kipper H (2016) New Phytologist 210, 1244-1258.



Example of metal toxicity in the
plants:

Ill

nanomolar range in ,norma

Incorporation of Cd into LHCIl in LL
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- Cd binding to LHCII causes disintegration

of trimers
- Cd bind to LHCII with dissociation

constants in the low nanomolar range
- diminished photosynthesis despite

funtional reaction centres!

Andresen E, Kappel S, Stark HJ, Riegger U, Borovec J, Mattusch J,

Heinz A, Schmelzer CEH, Matouskova S, Dickinson B, Klpper H (2016)

New Phytologist 210, 1244-1258.
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Chronic Cd toxicity in the nanomolar range in soybean plants:
additional inhibition of electron transfer to PSI
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- Cd inhibits electron flow to PSI already in the environmentally relevant nanomolar
range

Andresen E, Lyubenova L, Huba&ek T, Bokhari SNH, Matougkova S, Mijovilovich A, Rohovec J, Kiipper H (print: 2020, published
online 24 November 2019) Journal of Experimental Botany 71, 1628-1644



ROS and Cadmium

e Cadmium redox inert = No Fenton reaction!

Electron
Transport

Haber-Weiss
Cycle

FE+2
@A Fenton
Mechanism

H0 + 1/50, B H50 +MDAsc

Y
H,0 + GSSG

Pinto, Journal of Phycology 39:1008-1018, 2003

Fenton:
Fe(ll) + H,O, 2> >
Fe(lll) + R* + OH" + H,0

,Biggest source of ROS in
animal cells” ...

- NEVER shown in vivo!



Possible target for Cd toxicity leading to ROS:
Superoxide dismutase (SOD), in plants a Cu/Zn enzyme

Substitution of Zn by Cd in SOD may contribute to
oxidative stress during Cd toxicity

Spinach SOD, From: Kitagawa Y et al., 1991, J Biochem 109, 477-85, images generated with Jena 3D viewer



Photosynthesis-related ROS
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Pospisil, Biochim & Biophys Acta 1817:218-231, 2012



ROS and Cadmium

ROS production 1‘ Removal of ROS ‘1,
Cd interferes with photosynthesis / * Cdreplaces Znin SOD (e.g.) =2 less
respiration = electrons transferred to functional SOD

O,

In response antioxidant enzymes

)



Production of
reactive oxygen
species (ROS) during
Cd-stress

in HL vs. LL

- Cd-induced formation of
ROS stronger in HL

-> superoxide formation
starts at lower Cd
concentrations than
peroxide formation

Andresen E, Kappel S, Stark HJ, Riegger
U, Borovec J, Mattusch J, Heinz A,
Schmelzer CEH, Matougkova S, Dickinson
B, Kipper H (2016) New Phytologist 210,
1244-1258.
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Influence of Cd on antioxidant enzymes

Lower Cd concentrations and shorter treatment duration tend to increase
the antioxidant system

Longer exposure and higher Cd concentrations lead to decreased activity
or content of the antioxidants



Cadmium toxicity in plants —
4. Genotoxicity

* Induction of DNA damage by

— direct interaction with the nucleotides

* modifications like base and sugar lesions, DNA strand breaks,
destruction of DNA-protein crosslinks etc.

— inhibiting DNA repairing enzymes

— Induction of ROS, ROS lead to lipid peroxidation, which causes
membrane damage and production of mutagenic aldehydes



Methods to detect Genotoxicity

* DNA Analyses
— Gelelectrophoresis and Comet Assay
— Random amplification of polymorphism DNA (RAPD)

 DNA /Chromosome Analyses
— Micronuclei formation
— Sister chromatid exchange
— Chromosomal aberrations

* Upregulation of DNA-related / repairing enzymes



DNA disruption — Gelelectrophoresis and Comet Assay

40

1: DNA from control plant, 2:-6: DNA from plants

treated with Cd 10, 50, 75, 100, 1000 uM

Fojtova & Kovarik, Plant, Cell & Envir. 23:531-537, 2000
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MCN/1000cells

W Control = 100uM
50pM

H 200pM

Micronuclei & Mitotic index

12

24

Time (h)

N Control ® 100pM
B 200pM

I

50uM

|

12
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24

48

Vicia root meristem cells;
established assay

Micronuclei formation due to
malfunctioning cell division
Dose and time dependent

— Cd treatment increases MCN at
high uM Cd

Mitotic index: ratio of cells in
metaphase stage to all cells

— Cd treatment reduces MI at
high uM Cd

Souguir et al., Ecotoxicology 20:329-336, 2011



Chromosomal aberrations

Vicia root meristem cells
a, b,e, f=50 uM Cd
¢, d, g=200 uM Cd

a & b = micronuclei

¢ = sticky chromosome

d = chromosome bridge

e ="“"+break
f="“"+isolated
chromosome

g = laggered chromosome
in metaphase

Souguir et al., Ecotoxicology 20:329-336, 2011



Sister chromatid exchange

-Exchange of identical parts of both sister chromatids in the same

chromosome after / during DNA replication

-As DNA sequence identical, exchange does not lead to genetic information
' change (# crossing over)

-Happens in normal cells, but enhanced after treatment with toxic /

radioactive substances

Test substance Concentration SCEs/metaphase MI
(mean + SE) (mean + SE)
o
nl"'* ‘;ﬂT
. Megative Control 0 6.26 £ 0.29 1180 2011
‘_, + - i {Hoagland’s nutrient Solution)
] - Cadmium nitrate 50 6.63 0.3 970 £ 0267
. T /‘ (M)
+ \ 100 7.43 £ 0,047 716 £032%
&= J/ ) 200 7.90 £ Q.07 L16 £ 003"
A " i | |
‘\ Positive control 5 12.11 = 0.06% 236 2031
+ ( Cyclophosphamide, pg/mL)

** (P < 0.01) and *** (P < 0.001) compared with negative control.
From: http://www.siteklabs.com/GenTox/

MammalianCellCytogenetics.html

Unyayar et al., Turk J Biol 34:413-422, 2010



Random amplification of polymorphism DNA analyses (RAPD)

* (Cdinteracts with DNA / induces mutation
* New / disappearing primer binding sites

« > New / disappearing bands on gel

e But mostly seen at very high uM Cd!

Ladder 1 2 3
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40 (mgL™") Cd concentration 80 (mgL™") Cd concentration
Primers Total bands in control | Appearance of Disappearance of  |Appearance Disappearance of
names new bands control bands of new control bands
bands
OPA-2 1679, 1500, 1205, 1205, 874, 513,221 900 1205, 874, 513,221
874 637,603, 513, 221

Shahrtash et al., J of Cell & Molecular Research 2(1):42-48, 2010



Cadmium in soil or water

b |

Inhibition of Competition for
transporters for other uptake with other
metal ions, e.g. Fe, Zn metal ions, e.g. Zn
[
\: J J
Deficiency of
— essential Excessive cadmium in plant
metals e.g. Zn
\
Disturbance of Generation
H ~
photosynthesis, e.g. by | «— of ROS
Mg?* replacement |
l y 7 l
Reduced carbon Lipid —>| Reaction Reaction with
fixation peroxidation with DNA proteins

Reduced growth of root and/or shoot

Andresen E, Kipper H (2013) Cadmium Toxicity in Plants. In: Cadmium: From Toxicity to Essentiality,
"Metal lons in Life Sciences Vol. 11;



Summary Cd toxicity

Threshold concentration for first toxic effects (Ceratophyllum, soybean): 20nM
— Most fluorescence parameters, growth, pigments,

First site of inhibition: photosynthetic apparatus
— ROS generation due to photosynthesis malfunction

Direct inhibition of PSIIRC only pronounced in HL

In LL binding of Cd to LHCII already below 20nM

Toxicity more pronounced under HL conditions

— Chl in LHCII acts as buffer under LL

Slightly higher but still nanomolar concentrations:

— selective Cd binding to few enzymes like allantoinase also in roots = disturbance of root
metabolism

Migh micromolar concentrations
— many unselective effects, also genotoxicity



All slides of my lectures can be downloaded
from my workgroup homepage

Biology Centre CAS - Institute of Plant Molecular Biology - Departments
= Department of Plant Biophysics and Biochemistry,

or directly
http://lwebserver.umbr.cas.cz/~kupper/AG_Kuepper_Homepage.htmi



